ALM 2017

1. Fitting a claim size distribution

You have received a dataset of historical claim severities of 810 claims.

Fit a gamma probability distribution and a lognormal distribution to the data.

2. Simulation using the fitted distribution

Make 1000 simulation of one year's aggregate claims, where

- the claim severities follow the gamma distribution you found above; and
- the expected number of claims is an unobserved random variable Θ ; and
- given Θ , the actual number of claims is a Poisson(Θ) random variable.

Assume that the expected number of claims Θ follows a gamma distribution with $E(\Theta) = 50$ and $SD(\Theta) = 10$. The random variable Θ can represent true randomness or your uncertainty regarding the number of claims to expect.

Having simulated Θ , assume that the number of claims *N* follows a Poisson distribution with $E(N) = \Theta$. You may use the approximation $Poisson(\lambda) \sim Normal(\lambda, \lambda)$ for large λ .

Based on the simulations:

- Estimate the expected annual claim cost;
- Estimate the VaR and TailVar of the annual claim cost, using $\alpha = 95\%$. The loss measured by VaR and TailVar is the difference between actual claim cost and expected claim cost.

3. Simulation using resampling

Do the same exercise as above, but use <u>resampling</u> from the list of claims to simulate the claim severities. Compare with the results of using a fitted distribution.